S.T.A.I.R.

General problem solving strategy that can be applied to a range of problems.
Goals

- Identify the key problem(s)
- Identify tools to assist in solving the problem
- Develop problem solving strategies
- Use your tools and strategy to solve the problem
S.T.A.I.R.

The Challenge of Computers

- Nature of computers - more universal in nature, not single tasked.
- Changing pace of technology
- Challenge of software diversity
S.T.A.I.R.

Confronting the Challenge of Computers

- Skilled computer users:
 - Have a strong general knowledge about how computers work and what they can and can’t do.
 - Know the main types of applications that are used.
 - Know what features they can expect to find within an application.
 - Skilled computer users have little fear of technology.
S.T.A.I.R.

Confronting the Challenge of Computers

- Becoming a skilled computer user
 - Make educated guesses to determine how things work. Don't worry if their guesses are sometimes incorrect. *They learn from their mistakes by trial and error.*
 - They rely on their ability to solve new problems and find answers independently than on previous knowledge of the commands of an application program.

- *The most universal characteristic of skilled computer users are that they are skilled problem solvers.*
S.T.A.I.R.

- Problem-solving can be seen as more of an art than a science.
- Each person has different ways of approaching problems.
- My intention is not to limit your problem-solving processes to our way of thinking, but to give you a framework you can fall back on when you are stuck.
S.T.A.I.R.

State the problem
Tools for the job
Algorithm development
Implementation of the algorithm
Refinement
S.T.A.I.R.

State the Problem

- This step seems obvious enough, but it is often the one people skip.
- We frequently start solving problems before we really think carefully about what problem we are trying to solve.
 - The result is confusion and wasted time.
- Take the time to describe carefully to yourself what you are trying to accomplish.
S.T.A.I.R.

State the Problem

- Avoid the temptation to phrase the problem in technical terms.
- Use whatever you need to make sure you have a firm understanding of what you want to accomplish.
 - Write down the problem
 - Make a diagram or flowchart
 - Draw a sketch
- If you don't know where you are trying to go, how will you know when you get there?
S.T.A.I.R.

Tools for the Job

- A tool could be anything
 - Command
 - Button on a toolbar
 - Selection on a drop-down menu
 - Strategy
 - Program
 - Anything that can help you depending on the kind of job you are trying to do and the context in which you are working.

- Most of the time, there is more than one tool available to do a job.
S.T.A.I.R.

Tools for the Job

- List the available tools and write them down.

- As you gain experience, you will constantly be adding new tools of all kinds to your repertoire.
S.T.A.I.R.

Algorithm Development

- An algorithm is a computer science term for a strategy or plan of action.
- Part of developing an algorithm is choosing an appropriate tool or set of tools from the previous step and determine how those tools will be used to solve the problem.
S.T.A.I.R.

Algorithm Development

- Algorithms can vary widely in the type and complexity of the strategy you will use.

- With less complex problems, your algorithm may be as simple as saying "I'm going to try pressing this particular button on the menu bar." A more complex problem will likely require a more complex algorithm and for you to write it down.
S.T.A.I.R.

Implementation of the Algorithm

- Thus far, none of the previous steps required the use of a computer.
- This step is the actual process of translating our human thought into something the computer can understand.
- With simple problems an algorithm may be implementing a command or two and all you have to do "just do it".
S.T.A.I.R.

Implementation of the Algorithm

- Programmers think of the implementation step as translating the algorithm into some type of computer programming language.
- The process is the same regardless of the complexity of the problem.
S.T.A.I.R.

Refinement

- We like to think if we learn a skill and prepare ourselves properly, we can solve a problem on the first attempt. Experience shows us this is not usually the case.

- A skilled problem solver will analyze what happened, review the other steps, and try again.

- Each unsuccessful attempt should bring you closer to an understanding of the problem and its solution. Use the process of elimination.

- As Sherlock Holmes said - Eliminate all other factors, and the one which remains must be the truth (solution).
S.T.A.I.R.

Refinement

- Refinement usually means going back and looking at the previous steps critically.
 - Ask yourself if you really defined the problem properly?
 - Have you used all the possible tools at your disposal? Are there any tools you overlooked?
 - Did you choose the best algorithm for the job?
 - Did you implement the solution properly?

- Practice will make you much more confident at this critical stage of the process.
S.T.A.I.R.

Main Concepts

- Computers are universal machines - the same machine can do many different kinds of tasks.
- Learning to use computers effectively requires problem solving ability.
- The STAIR method is one way of organizing the problem solving process.
Main Concepts

Statement of Problem: defining with words, sketches, or other means what you want to accomplish.

Tools: Identify concepts, commands, menu items, toolbar buttons, programs, or ideas that can help you solve a problem.

Algorithm: A strategy for solving a problem.

Implementation: The process of translating our human thought into something the computer can understand.

Refinement: The process of studying an unsuccessful attempt at problem solving and looking back at earlier steps to approach a solution.
S.T.A.I.R.

Example: Drawing Rectangle

Implementation – Use S.T.A.I.R. to complete Implementation

- **Statement of Problem**: Nancy needs to draw a rectangle to represent her Aunt's house.

- **Tools**: She spots a button on the toolbar that has a picture of a rectangle! If she doesn't see it there, she knows she can cruise the menus for a likely looking command, or check the on-line help.

- **Algorithm**: She decides: "What the heck. I'll press it and see what happens."

- **Implementation**: She presses the button. The cursor on this screen changes, and when she drags the mouse on the screen, she is able to draw a rectangle. She practices a few times until she has the hang of it.

- **Refinement**: After she knows how to make a rectangle exactly how she wishes, she puts one where her aunt's house should be on the map.